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The (not anymore) missing piece to enable great 
video conferences

RTC



Proposals are converging

Initial implementations are becoming stable

The MatrixRTC approach checks more boxes for VoIP than ever before

✅ Scalable

✅ Interchangeable components

✅ Very flexible! (can be used for much more than VoIP

✅ Secure, Federated, verified identities …

The first time where we can have a complete technical summary of the MatrixRTC 
modules that enable VoIP over Matrix

Which we will do now!

Why I am excited about giving this talk?



Letʼs look at Federated Chat Rooms
Where does MatrixRTC fit in?
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○ Exchange Backend 
information SFU

○ communicate call 
participation

● Metadata
○ Call History
○ Ringing

● Encryption
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Room State
High level signalling
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● A call is a state event
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Solution: Calls without a
Call Event

Only use Call Member events!

● Clear ownership model
○ No overriding

● Computed CallEvent
○ The Call Event is not 

necessary
○ Situation dependent 

transparent glaring.
(democratic, admin, …)



Only use Call Member events!

● Clear ownership model
○ No overriding

● Computed CallEvent
○ The Call Event is not 

necessary
○ Situation dependent 

transparent glaring.
(democratic, admin, …)

● One broken/malicious client 
does not have the power to 
break the experience for the 
others!

Solution: Calls without a
Call Event



MatrixRTC is now only a collection of members.
● Every room can always be used as a MatrixRTC session
● Everything else would be application specific



Letʼs have a closer look at the call member Event



MatrixRTC / App Specific / Infrastructure

MatrixRTC
- Defines Sessions

Infrastructure
- Is replaceable.
- Specced separately.
- Allow adapting emerging technologies.
- Independent communication system 

(websocket, matrix ToDevice, …)

App Specific
- App specific state fields
- Can have multiple implementations



Room State
Focus Selection





Focus Selection

foci_active:
“The algorithm that defines how to 
choose a focus for this memberˮ

 foci_preferred:
“The input data for this algorithm 
contributed by this memberˮ

Note: The focus_active needs to be 
designed so that all participants 
converge to the same SFU/focus.



Revival of Full-Mesh

“Active foci is the algorithm/method 
to connect to a member.ˮ

Full mesh can work 

● Another focus type

Future:
A focus type that starts with 
full_mesh and scales:

● full_mesh_into_livekit



Room State
Reliable memberships



Problem

Default situation:
A client connects with a join 
event



Problem

A client loses connection:

● Network error
● Client/Widget crash
● User closes tab
● Device runs out of battery
● …

Calls never end!



Solution “Delayed eventsˮ

Client sends two events on 
connect:

● Join event
● Delayed leave event



Solution “Delayed eventsˮ

Queue an event on 
the homeserver.

The queue timeout 
can be restarted 
with a new 
endpoint.



Solution “Delayed eventsˮ

Delayed event is stored on the Home 
Server but not yet in the DAG:

● No conflict who has the timeout 
responsibility

● Data can only be synced 
across HS’s via DAG - lots of 
DAG updates



Solution “Delayed eventsˮ

Losing connection - “last will” 
will be sent:

● The broken client will not 
send a restart for 5s



Solution “Delayed eventsˮ

The room state will convert to a 
“clean” state.



Other possibilities

● Self destructing messages
● Scheduled events
● Tea pot timer :-) 

○ m.call.notify
● Temporal room permissions
● …



Metadata
History





Call History

Join

Leave

The m.call.member events can be parsed as Join and Leave events:



Call History

C
all Start

C
all End

All members 
in no session

All members 
in no session



Metadata
Ringing



Ringing

● Use existing m.mentions
● Can be a simple room event 

entirely application specific



Raise Hand / Emojis

Use Matrix primitives

Load “raise hand state” on join

● relations



Encryption





What we already have in Matrix

● Megolm
● Device verification
● Secure channels to all participants Olm, encrypted ToDevice)

Does it fit for MatrixRTC

● Sub-group of a room aka call participants



Encryption for WebRTC SFrame

● Frame Trailer
● Symmetric keys
● Timing Tradeoff

○ Distributing keys
○ Switching sender 

keys



Encryption Join/Leave

● Forward secrecy
● Post compromising



Encryption Full Mesh ON^2

● Forward secrecy
● Post compromising



Encryption Shared Key

● Forward secrecy
● Post compromising



Encryption per-sender key + Shared Salt

Only share a per-sender key on join
Update the key using a shared salt 



Ownership complexities!

Who sends the shared salt
No-one (broken client, malicious user) should be able to break 
the call for everyone



Encryption Ratcheting? Megolm Subsession? MLS?

● Ratcheting as a possible join (only) optimization
● Existing systems: MLS, Megolm Subsession
● Conditions are great: Leverage on the existing matrix trust and 

encryption systems



Key takeaways

● Interchangeable RTC backend Livekit, full mesh, ...)
○ Interchangeable algorithms how to find/converge to a backend

● Matrix helps a lot with encryption
● Support MatrixRTC is simple

○ Client needs to be aware about only one event type: m.rtc.member
■ Show type and user count in a session

○ Supporting (join) a specific application is harder (widgets can help a lot)
● Extensible like the rest of Matrix

○ New and different MatrixRTC apps are part of the design

This allows MatrixRTC to be ready now and grow into the best it can be 
organically
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Thank you for listening!

RTC


