
timok@element.io
@toger5:matrix.org

The (not anymore) missing piece to enable great 
video conferences

RTC



Proposals are converging

Initial implementations are becoming stable

The MatrixRTC approach checks more boxes for VoIP than ever before

✅ Scalable

✅ Interchangeable components

✅ Very flexible! (can be used for much more than VoIP

✅ Secure, Federated, verified identities …

The first time where we can have a complete technical summary of the MatrixRTC 
modules that enable VoIP over Matrix

Which we will do now!

Why I am excited about giving this talk?



Letʼs look at Federated Chat Rooms
Where does MatrixRTC fit in?



MatrixRTC Components Agenda

● WebRTC infrastructure
● Signaling

○ Exchange Backend 
information SFU

○ communicate call 
participation

● Metadata
○ Call History
○ Ringing

● Encryption



● WebRTC infrastructure
● Signaling

○ Exchange Backend 
information SFU

○ communicate call 
participation

● Metadata
○ Call History
○ Ringing

● Encryption

MatrixRTC Components Agenda



● WebRTC infrastructure
● Signaling

○ Exchange Backend 
information SFU

○ communicate call 
participation

● Metadata
○ Call History
○ Ringing

● Encryption

MatrixRTC Components Agenda



● WebRTC infrastructure
● Signaling

○ Exchange Backend 
information SFU

○ communicate call 
participation

● Metadata
○ Call History
○ Ringing

● Encryption

MatrixRTC Components Agenda



Room State
High level signalling





Initial Intuitive) 
approach

● A call is a state event
● It advocates the 

Infrastructure it will use.



● A call is a state event
● It advocates the 

Infrastructure it will use.

● One broken/malicious 
client can break it for 
everyone

Initial Intuitive) 
approach



● A call is a state event
● It advocates the 

Infrastructure it will use.

● One broken/ malicious 
client can break it for 
everyone

● If not listening to url 
changes → splitbrain

Initial Intuitive) 
approach



Solution: Calls without a
Call Event

Only use Call Member events!

● Clear ownership model
○ No overriding

● Computed CallEvent
○ The Call Event is not 

necessary
○ Situation dependent 

transparent glaring.
(democratic, admin, …)



Only use Call Member events!

● Clear ownership model
○ No overriding

● Computed CallEvent
○ The Call Event is not 

necessary
○ Situation dependent 

transparent glaring.
(democratic, admin, …)

● One broken/malicious client 
does not have the power to 
break the experience for the 
others!

Solution: Calls without a
Call Event



MatrixRTC is now only a collection of members.
● Every room can always be used as a MatrixRTC session
● Everything else would be application specific



Letʼs have a closer look at the call member Event



MatrixRTC / App Specific / Infrastructure

MatrixRTC
- Defines Sessions

Infrastructure
- Is replaceable.
- Specced separately.
- Allow adapting emerging technologies.
- Independent communication system 

(websocket, matrix ToDevice, …)

App Specific
- App specific state fields
- Can have multiple implementations



Room State
Focus Selection





Focus Selection

foci_active:
“The algorithm that defines how to 
choose a focus for this memberˮ

 foci_preferred:
“The input data for this algorithm 
contributed by this memberˮ

Note: The focus_active needs to be 
designed so that all participants 
converge to the same SFU/focus.



Revival of Full-Mesh

“Active foci is the algorithm/method 
to connect to a member.ˮ

Full mesh can work 

● Another focus type

Future:
A focus type that starts with 
full_mesh and scales:

● full_mesh_into_livekit



Room State
Reliable memberships



Problem

Default situation:
A client connects with a join 
event



Problem

A client loses connection:

● Network error
● Client/Widget crash
● User closes tab
● Device runs out of battery
● …

Calls never end!



Solution “Delayed eventsˮ

Client sends two events on 
connect:

● Join event
● Delayed leave event



Solution “Delayed eventsˮ

Queue an event on 
the homeserver.

The queue timeout 
can be restarted 
with a new 
endpoint.



Solution “Delayed eventsˮ

Delayed event is stored on the Home 
Server but not yet in the DAG:

● No conflict who has the timeout 
responsibility

● Data can only be synced 
across HS’s via DAG - lots of 
DAG updates



Solution “Delayed eventsˮ

Losing connection - “last will” 
will be sent:

● The broken client will not 
send a restart for 5s



Solution “Delayed eventsˮ

The room state will convert to a 
“clean” state.



Other possibilities

● Self destructing messages
● Scheduled events
● Tea pot timer :-) 

○ m.call.notify
● Temporal room permissions
● …



Metadata
History





Call History

Join

Leave

The m.call.member events can be parsed as Join and Leave events:



Call History

C
all Start

C
all End

All members 
in no session

All members 
in no session



Metadata
Ringing



Ringing

● Use existing m.mentions
● Can be a simple room event 

entirely application specific



Raise Hand / Emojis

Use Matrix primitives

Load “raise hand state” on join

● relations



Encryption





What we already have in Matrix

● Megolm
● Device verification
● Secure channels to all participants Olm, encrypted ToDevice)

Does it fit for MatrixRTC

● Sub-group of a room aka call participants



Encryption for WebRTC SFrame

● Frame Trailer
● Symmetric keys
● Timing Tradeoff

○ Distributing keys
○ Switching sender 

keys



Encryption Join/Leave

● Forward secrecy
● Post compromising



Encryption Full Mesh ON^2

● Forward secrecy
● Post compromising



Encryption Shared Key

● Forward secrecy
● Post compromising



Encryption per-sender key + Shared Salt

Only share a per-sender key on join
Update the key using a shared salt 



Ownership complexities!

Who sends the shared salt
No-one (broken client, malicious user) should be able to break 
the call for everyone



Encryption Ratcheting? Megolm Subsession? MLS?

● Ratcheting as a possible join (only) optimization
● Existing systems: MLS, Megolm Subsession
● Conditions are great: Leverage on the existing matrix trust and 

encryption systems



Key takeaways

● Interchangeable RTC backend Livekit, full mesh, ...)
○ Interchangeable algorithms how to find/converge to a backend

● Matrix helps a lot with encryption
● Support MatrixRTC is simple

○ Client needs to be aware about only one event type: m.rtc.member
■ Show type and user count in a session

○ Supporting (join) a specific application is harder (widgets can help a lot)
● Extensible like the rest of Matrix

○ New and different MatrixRTC apps are part of the design

This allows MatrixRTC to be ready now and grow into the best it can be 
organically



timok@element.io
@toger5:matrix.org

Thank you for listening!

RTC


